
Thermal stability of a reactive
viscous flow through a
porous-saturated pipe

O.D. Makinde
Applied Mathematics Department, University of Limpopo,

Sovenga, South Africa

Abstract

Purpose – This paper aims to examine the steady-state solutions of a strongly exothermic reaction of
a viscous combustible fluid in a cylindrical pipe filled with a saturated porous medium under
Arrhenius kinetics, neglecting reactant consumption.

Design/methodology/approach – The problem is formulated in terms of a non-linear differential
equation. Approximate solution of this problem is obtained using a regular perturbation technique. A
bifurcation study is performed using a special type of Hermite-Padé approximation method in order to
determine the thermal criticality conditions.

Findings – The steady-state thermal ignition criticality conditions as well as the solution branches
was obtained accurately. It was found that a reduction in porous medium permeability will facilitate
the early appearance of thermal ignition, hence, improving the effectiveness of engineering
equipments like the catalytic converter used in an automobile’s exhaust system.

Practical implications – A very useful source of information for researchers on the subject of
thermal combustion in porous media.

Originality/value – This paper illustrates the effect of permeability parameter on steady-state
thermal ignition criticality conditions in a porous medium.
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Nomenclature
a ¼ pipe radius
A ¼ rate constant
C0 ¼ concentration of the reactant
Da ¼ Darcy number
E ¼ activation energy
k ¼ thermal conductivity
K ¼ permeability
P ¼ fluid pressure
Q ¼ heat of reaction
R ¼ universal gas constant
T0 ¼ wall temperature
T ¼ absolute temperature

W ¼ fluid velocity
z ¼ axial distance
r ¼ radial distance

Greek symbols
m ¼ fluid dynamics viscosity
l ¼ Frank-Kamenetskii
1 ¼ activation energy parameter
d ¼ viscous heating parameter
b ¼ porous medium shape factor
u ¼ dimensionless temperature
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1. Introduction
The problem of forced convection in a pipe filled with a porous medium is a classical
one at least for the case of slug flow (Darcy model). However, studies related to thermal
ignitions and heat transfers in inert porous media are extremely useful in improving
the design and operation of many engineering equipments (Brinkman, 1947; Makinde,
1999; Makinde, 2006). For instance, the catalytic converter in an automobile’s exhaust
system is made up of a finely divided platinum-iridium catalyst (that is forming a
porous matrix) and provides a platform for exothermic chemical reaction where
unburned hydrocarbons completely combust. This helps to reduce the emissions of
toxic car pollutant such as carbon monoxide (CO) into the environment. However, in
order to ignite, stabilize and operate under steady-state conditions, the thermal
criticality of a burner based on combustion in inert porous media like catalytic
converter must be determined (Makinde, 2006). Mathematically speaking, thermal
ignition and heat transfer in inert porous media constitutes a non-linear reaction
diffusion problem and the long-time behaviour of the solutions in space will provide us
an insight into inherently complex physical process of thermal runaway in the system
(Frank Kamenetskii, 1969; Makinde, 2005).

The theory of non-linear reaction diffusion equations is quite elaborate and their
solution in rectangular, cylindrical and spherical coordinate remains an extremely
important problem of practical relevance in the engineering sciences (Al-Hadhrami
et al., 2003; Makinde, 2007). Several numerical approaches have developed in the last
few decades such as, finite differences, spectral method, shooting method, and so forth,
to tackle this problem. More recently, the ideas on classical analytical methods have
experienced a revival, in connection with the proposition of novel hybrid
numerical-analytical schemes for non-linear differential equations. One such trend is
related to Hermite-Padé approximation approach (Hunter and Baker, 1979; Makinde,
2004; Tourigny and Drazin, 2000). This approach, over the last few years, proved itself
as a powerful benchmarking tool and a potential alternative to traditional numerical
techniques in various applications in sciences and engineering. This semi-numerical
approach is also extremely useful in the validation of purely numerical scheme.

In this paper, we intend to construct approximate solution for a steady-state
reaction diffusion equation that models thermal runaway problem in a
porous-saturated pipe using perturbation technique together with a special type of
Hermite-Padé approximants. The mathematical formulation of the problem is
established and solved in Sections 2 and 3. In Section 4 we introduce and apply some
rudiments of Hermite-Padé approximation technique. Both numerical and graphical
results are presented and discussed quantitatively with respect to various parameters
embedded in the system in Section 5.

2. Mathematical model
We consider a steady-state hydrodynamically and thermally developed unidirectional
flow of a viscous combustible reacting fluid in the z-direction inside a pipe of uniform
cross-section with impermeable isothermal wall at r ¼ a, filled with a homogeneous
and isotropic porous medium as shown in Figure 1.

Neglecting reactant consumption, the governing momentum and energy balance
equations are:
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Equation (1) is a well-known Brinkman (1947) momentum equation while the
additional viscous dissipation term in equation (2) is due to Al-Hadhrami et al. (2003)
and is valid in the limit of very small and very large porous medium permeability.

The appropriate boundary conditions are:

u ¼ 0; T ¼ T0; on r ¼ a; ð3Þ

du

dr
¼ 0;

dT

dr
¼ 0; on r ¼ 0; ð4Þ

where T is the absolute temperature, P the fluid pressure, T0 the geometry wall
temperature, k the thermal conductivity of the material, K the porous medium
permeability parameter, Q the heat of reaction, A the rate constant, E the activation
energy, R the universal gas constant, C0 the initial concentration of the reactant species,
a the pipe radius, (r, z) the distance measured in the radial and axial directions,
respectively, and m is the combustible material dynamic viscosity coefficient. Let
M ¼ -(a/Um)(dP/dz) be a constant axial pressure gradient parameter and U the fluid
characteristic velocity. We introduce the following dimensionless variables into
equations (1)-(4);

u ¼
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r
; Da ¼

K

a 2
;

ð5Þ

and obtain the dimensionless governing equation together with the corresponding
boundary conditions as (neglecting the bar symbol for clarity):
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þ

1
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2 b 2W þ 1 ¼ 0; ð6Þ
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¼ 0; ð7Þ

Figure 1.
Geometry of the problem

r u = 0,  T=T0 r = a

u

z combustible viscous material r = 0
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W ð1Þ ¼ uð1Þ ¼ 0; ð8aÞ

dW

dr
ð0Þ ¼ 0;

du

dr
ð0Þ ¼ 0; ð8bÞ

where l, 1, d, b, Da represent the Frank-Kamenetskii parameter, activation energy
parameter, the viscous heating parameter, the porous medium shape factor parameter
and the Darcy number, respectively. In the following sections, equations (6)-(8) are
solved using both perturbation and multivariate series summation techniques.

3. Perturbation method
It is very easy to obtain the solution for the fluid velocity profile exactly, however, due
to the non-linear nature of the temperature field equation (7), it is convenient to form a
power series expansion in the Frank-Kamenetskii parameter l, i.e.:

u ¼
X1
i¼0

uil
i: ð9Þ

Substituting the solution series in equation (9) into equation (7) and collecting the
coefficients of like powers of l, we obtained and solved the equations of the coefficients
of solution series iteratively. The solution for the velocity and temperature fields are
given as:

W ðr;b . 0Þ ¼
1

b 2
1 2

I 0ðbrÞ

I 0ðbÞ

� �
; ð10aÞ

W ðr;b! 0Þ ¼ 2
1

4
ðr 2 2 1Þ2

b 2

64
ðr 2 2 1Þðr 2 2 3Þ

2
b 4

2; 304
ðr 2 2 1Þðr 4 2 8r 2 þ 19Þ þ Oðb 6Þ;

ð10bÞ

uðrÞ ¼ 2
1

7; 372; 800
lðr 2 2 1Þð18db 6r 8 þ 1; 350db 4r 6 2 207db 6r 6

þ 25; 600db 2r 4 þ 893db6r 4 2 9; 850db 4r 4 þ 115; 200dr 2

2 89; 600db 2r 2 þ 22; 550db 4r 2 2 1; 807db 6r 2 þ 25; 600db 2

2 20; 650db 4 þ 1; 843; 200 þ 2; 243db 6 þ 115; 200dÞ þ Oðl2Þ:

ð11Þ

Using a computer symbolic algebra package (MAPLE), we obtained the first 21 terms
of the above solution series equation (11) as well as the series for the fluid maximum
temperature umax ¼ u(r ¼ 0; l, 1,b, d). We are aware that the power series solution in
equation (11) is valid for large Darcy number (b ! 0) and very small
Frank-Kamenetskii parameter values (l ! 0). However, using Hermite-Padé
approximation technique, we have extended the usability of the solution series
beyond small parameter values as illustrated in the following section.
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4. Thermal criticality and bifurcation study
The concept of thermal criticality or non-existence of steady-state solution to non-linear
reaction diffusion problems for certain parameter values is extremely important from
application point of view. This characterizes the thermal stability properties of the
materials under consideration and the onset of thermal runaway phenomenon. In order
to determine the appearance of thermal runaway in the system together with the
evolution of temperature field as the exothermic reaction rate increases (i.e. l . 0),
we employ a special type of Hermite-Padé approximation technique. Suppose that the
partial sum:

UN21ðlÞ ¼
XN21

i¼0

ail
i ¼ U ðlÞ þ OðlN Þ as l! 0; ð12Þ

is given. We are concerned with the bifurcation study by analytic continuation as well
as the dominant behaviour of the solution by using partial sum in equation (12). We
expect that the accuracy of the critical parameters will ensure the accuracy of the
solution. It is well-known that the dominant behaviour of a solution of a differential
equation can often be written as Guttamann (1989):

U ðlÞ <
H ðlc 2 lÞa for a – 0; 1; 2; . . .

H ðlc 2 lÞa lnjlc 2 lj for a ¼ 0; 1; 2; . . .

(
as l! lc; ð13Þ

where H is some constant and lc is the critical point with the exponent a. We shall
assume that U(l) is a local representation of an algebraic function of l in the context of
non-linear problems. Therefore, we seek an expression of the form:

Fdðl;UN21Þ ¼ A0N ðlÞ þ Ad
1N ðlÞU

ð1Þ þ Ad
2N ðlÞU

ð2Þ þ Ad
3N ðlÞU

ð3Þ; ð14Þ

such that:

A0N ðlÞ ¼ 1; AiN ðlÞ ¼
Xdþi

j¼1

bijl
j21; ð15Þ

and:

Fdðl;U Þ ¼ OðlNþ1Þ as l! 0; ð16Þ

where d $ 1; i ¼ 1; 2; 3: The condition (15) normalizes the Fd and ensures that the
order of series AiN increases as i and d increase in value. There are thus 3(2 þ d )
undetermined coefficients bij in the expression (15). The requirement of equation (16)
reduces the problem to a system of N linear equations for the unknown coefficients of
Fd. The entries of the underlying matrix depend only on the N given coefficients ai.
Henceforth, we shall take:

N ¼ 3ð2 þ d Þ; ð17Þ

so that the number of equations equals the number of unknowns. Equation (16) is a
new special type of Hermite-Padé approximants. Both the algebraic and differential
approximants forms of equation (16) are considered. For instance, we let:

U ð1Þ ¼ U ; U ð2Þ ¼ U 2; U ð3Þ ¼ U 3; ð18Þ
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and obtain a cubic Padé approximant. This enables us to obtain solution branches of
the underlying problem in addition to the one represented by the original series. In the
same manner, we let:

U ð1Þ ¼ U ; U ð2Þ ¼ DU ; U ð3Þ ¼ D 2U ; ð19Þ

in equation (15), where D is the differential operator given by D ¼ d/dl. This leads to
a second order differential approximants. It is an extension of the integral
approximants idea by Hunter and Baker (1979) and enables us to obtain the
dominant singularity in the flow field, i.e. by equating the coefficient A3N(l) in the
equation (16) to zero. Meanwhile, it is very important to know that the rationale for
chosen the degrees of AiN in equation (15) in this particular application is based on the
simple technique of singularity determination in second order linear ordinary
differential equation with polynomial coefficients as well as the possibility of multiple
solution branches for the non-linear problem (Vainberg and Trenogin, 1974). In
practice, one usually finds that the dominant singularities are located at zeroes of the
leading polynomial Aðd Þ

3N coefficients of the second order linear ordinary differential
equation. Hence, some of the zeroes of Aðd Þ

3N may provide approximations of the
singularities of the series U and we expect that the accuracy of the singularities will
ensure the accuracy of the approximants.

The critical exponent aN can easily be found by using Newton’s polygon algorithm.
However, it is well-known that, in the case of algebraic equations, the only singularities
that are structurally stable are simple turning points. Hence, in practice, one almost
invariably obtains aN ¼ 1/2. If we assume a singularity of algebraic type as in
equation (13), then the exponent may be approximated by:

aN ¼ 1 2
A2N ðlCN Þ

DA3N ðlCN Þ
: ð20Þ

5. Results and discussion
The bifurcation procedure above is applied on the first 21 terms of the solution series
and we obtained the results shown in Tables I and II:

The result in Table I shows the rapid convergence of our procedure for the
dominant singularity (that is lc) together with its corresponding critical exponent ac

with gradual increase in the number of series coefficients utilized in the approximants.
In Table II, we noticed that the magnitude of thermal criticality at very large activation
energy (1 ¼ 0) decreases with a decrease in the porous medium permeability (b . 0).
This shows clearly that reducing the permeability of a porous medium will enhance the
early appearance of ignition in a reactive viscous flow of a combustible fluid. It is

d N umax lc acN

1 9 1.386540593950578 2.0000471922705 0.499999
3 15 1.386294361119890 2.0000000000000 0.500000
5 21 1.386294361119890 2.0000000000000 0.500000

Table I.
Computations showing

the procedure rapid
convergence for 1 ¼ 0.0,

d ¼ 0.0
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noteworthy that a decrease in the combustible fluid activation energy (that is 1 . 0)
will lead to an increase in the magnitude of thermal ignition criticality, hence, delaying
the appearance of thermal runaway in the system. A slice of the bifurcation diagram
for 0 # 1 ! 1 is shown in Figure 2. In particular, for every b $ 0, there is a critical
value lc (a turning point) such that, for 0 # l , lc there are two solutions (labeled I
and II) and the solution II diverges to infinity as l ! 0. The fully developed
dimensionless velocity distribution is shown in Figure 3. We observed that the
magnitude of the fluid velocity increases and tend to that of Poiseuille flow with a
gradual increase in the porous medium permeability (that is b ! 0). Similarly, an
increase in the fluid temperature is observed with increasing values of l due to a
combined effect of viscous dissipation and exothermic reaction as shown in Figure 4.

6. Conclusion
The thermal stability of a reactive viscous fluid flowing through a porous-saturated
pipe is investigated using perturbation technique together with a special type of
Hermite-Padé approximants. We obtained accurately the steady-state thermal ignition
criticality conditions as well as the solution branches. It is observed that a reduction in
porous medium permeability will facilitate the early appearance of thermal ignition,
hence, improving the effectiveness of engineering equipments like the catalytic
converter used in an automobile’s exhaust system. Finally, the above analytical and
computational procedures are advocated as effective tool for investigating several
other parameter dependent non-linear boundary-value problems.

d b 1 umax lc acN

1.0 0.0 0.1 1.8491492 2.2068382 0.500000
1.0 0.5 1.0 1.8508176 2.2062313 0.500000
0.0 0.0 0.0 1.3865405 2.0000000 0.500000
1.0 0.0 0.0 1.4157385 1.9454358 0.500000
1.0 0.1 0.0 1.4158015 1.9453932 0.500000
1.0 0.3 0.0 1.4162698 1.9450999 0.500000
1.0 0.5 0.0 1.4170165 1.9447578 0.500000

Table II.
Computations showing
thermal ignition
criticality for different
parameter values (d, b, 1)

Figure 2.
A slice of approximate
bifurcation diagram in the
(l, umax(b,1)) plane
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